

Contents
Introduction .. 1

Part A: Design the Test Circuit on runlinc .. 3

Part B: Program the Test Circuit .. 4

Part C: The Working test Project... 8

Part D: Design the LED Circuit on runlinc ... 9

Part E: Build the Circuit ... 10

Part F: Program the Circuit .. 14

Part G: The Working Project .. 15

Summary ... 15

Introduction

Problem
How do we control the devices that are connected to the STEMSEL board with code? How

do we connect the devices and how do we write the code? How do you use the code to

control a light to make it blink? In this project, we will go through a process that tells you

about a simple code that will make an LED strobe light, to let you familiar with the runlinc

STEMSEL board, and get to know about a STEMSEL microcontroller-controlled system’s

connection and coding.

Background
To work with the microcontroller, we need to know how to let it control first.

Microcontrollers can be used for many applications, by executing pre-loaded codes and

using the inputs and outputs that are connected to the board, to sense the signals and

output signals.

By executing the code, the microcontroller will deal with the input and give a certain output.

So, the code is what the microcontroller will follow, and what it will do.

Codes are the things we tell the microcontroller, to let it do what we want it to do, by using a

special language the microcontroller will understand. The language is the code. We need to

load the code onto the microcontroller by typing it and loading it onto the microcontroller on

the control surface.

Ideas
So how can we use the STEMSEL board? We can start with some simple but meaningful

projects, like making a light connected to the board behave in a certain way. We can start

runlinc Project 1 B0: Light Timing
Control (E32W Version)

runlinc Project 1 B0: Light Timing Control (E32W Version)

© Copyright 2025 eLabtronics. All Rights Reserved
P A G E | 2

with making a light that will turn on for 1 second and then stay off for 1 second and keep

doing this while the board is on and the program is running, an LED strobe light.

Plan
We have a STMSEL board and some LED lights (a light built on the board and a light in the

package with the board), we can first make a program to let the board control the on-board

LED for a test, then connect the other LED to the board and let the board turn the LED on

and off. Below is the input/output block diagram for the connection.

Figure 1: Block diagram of Microchip outputs

runlinc Background
runlinc is a web page inside a Wi-Fi chip. The programming is done inside the browsers

compared to programming inside a chip. The runlinc web page inside the Wi-Fi chip will

command the microchips to do sensing, control, and data logging Internet of Things (IoT). It

can predict and command.

runlinc Project 1 B0: Light Timing Control (E32W Version)

© Copyright 2025 eLabtronics. All Rights Reserved
P A G E | 3

Part A: Design the Test Circuit on runlinc

Note: Refer to runlinc Wi-Fi Setup Guide document to connect to runlinc

Use the left side of the runlinc web page to construct an input/output (I/O).

For port D2 name it Board_LED_Light and set it as

DIGITAL_OUT.

Figure 2: I/O configurations connections

Maybe you’ve already noticed that the name for the ports is case-sensitive and cannot

include space. Case-sensitive here means the program will save the names as variables

and recognise the Uppercase letters as uppercase letters and not treat every letter as

lowercase letters.

e.g. if Jack writes “board_LED_Light” in the code to try to turn the light on D2 on and uses

other codes right, the light will not be turned on as “board_LED_Light” is different from

“Board_LED_Light”, and the program will never turn the “Board_LED_Light” on. One simple

different case can cause the entire program not to run correctly! So be careful about the

letters’ case.

Also, these ports correspond to the ports on the physical board with the same number but

different letters. e.g. D5 on the web page corresponds to io5 on the board, D19 on the

web page corresponds to io19 on the board, etc.

Here, you can click on the red “OFF” button to turn the port on to check it. Keep in mind to

always do this to check connections before the programming and when problems happen.

After you finish, click on the green “ON” button to turn it off.

runlinc Project 1 B0: Light Timing Control (E32W Version)

© Copyright 2025 eLabtronics. All Rights Reserved
P A G E | 4

Part B: Program the Test Circuit
Now we can start to program the code of the blinking LED. To do this, JavaScript Loop is

needed. The code in the JavaScript Loop window will be running from its beginning, again

and again, when the program is running.

Figure 3: JavaScript Loop Window webpage screenshot

We want the board to act 4 steps. First, turn on the LED; second, hold for 1 second; third,

turn off the LED; at last, hold for 1 second. Then it will repeat the 4 steps.

The first step is turning the LED on. To do this we need to write a line of code. We have

Macro buttons to help you build the code, which makes things easier.

Use the add macro buttons on top of the JavaScript Loop window.

Figure 4: drop-down menus and the “Add Macro” button

First, select “turnOn” from the “Select Macro”,

Then select the port name we named from the device,

runlinc Project 1 B0: Light Timing Control (E32W Version)

© Copyright 2025 eLabtronics. All Rights Reserved
P A G E | 5

Then click on the “Add Macro” button to add the macro to the code.

Then, we need to make it wait for 1 second. To do this, we need another line of code.

First, in the code window, move the cursor to the place you want to add this macro. We

better add the macro in a new line, to give it an overall organized look. Click in the code

window to show the cursor, if it's on the right of the first line of code, press enter to move the

cursor to the next line.

Then, select “await mSec” in the select macro button,

runlinc Project 1 B0: Light Timing Control (E32W Version)

© Copyright 2025 eLabtronics. All Rights Reserved
P A G E | 6

Then click on “Add Macro” button to add the macro.

Now you’ve added another line of code, this will make the microcontroller wait for 1 second. Be

aware that the unit here is in milliseconds, and 1 second is equal to 1000 milliseconds. You can

enter other numbers to change the time it waits. e.g. 500 makes it to wait for 0.5 second, etc.

After the wait, we turn the light off.

First, move the cursor to the right place. Then, select “turnOff” in the select macro button,

Then click on the “Add Macro” button to add the macro to the code.

This will stop turning on to the corresponding port, thus turning the LED light off when the

program is running.

After this, we will let it wait for 1 second again then start from the beginning to turn the light on.

We need to let it wait for 1 second, because if not, the light will be turned on immediately after

being turned off, and we cannot notice the turn-off phase.

First, move the cursor to the right place, then select “await mSec” in the select macro,

runlinc Project 1 B0: Light Timing Control (E32W Version)

© Copyright 2025 eLabtronics. All Rights Reserved
P A G E | 7

 turnOn(Board_LED_Light);
 await mSec(1000);
 turnOff(Board_LED_Light);
 await mSec(1000);

Then click on the “Add Macro” button to add this macro.

The final code should look like this:

The final runlinc webpage should look like this:

Figure 5: runlinc webpage screenshot

You can change the code, by manually typing code or deleting them. You can also enter the

code by typing the exact same codes in, it will work, we will do this in the next section.

Now we can go on and test the system we built.

runlinc Project 1 B0: Light Timing Control (E32W Version)

© Copyright 2025 eLabtronics. All Rights Reserved
P A G E | 8

Part C: The Working test Project

Run the program by pressing “Run Code” button on the webpage;

Figure 6: runlinc webpage “Run Code”

When the project is running, there will be a blue light on the board blinking at 1-second

intervals:

Figure 7: blinking blue LED
If your test program is working, we can go to the next part to build an LED circuit with the I/O

ports. If it’s not working, you can go back to parts A to C to make sure that you’ve followed

each step correctly.

runlinc Project 1 B0: Light Timing Control (E32W Version)

© Copyright 2025 eLabtronics. All Rights Reserved
P A G E | 9

Part D: Design the LED Circuit on runlinc
Use the left side of the runlinc web page to construct an input/output (I/O).

For port D5 name it LED_Light and set it as DIGITAL_OUT.

For port D19 set it as DIGITAL_OUT (used as the negative pin

of LED – no name needed).

Figure 8: I/O configurations connections

runlinc Project 1 B0: Light Timing Control (E32W Version)

© Copyright 2025 eLabtronics. All Rights Reserved
P A G E | 10

Part E: Build the Circuit

Use the STEMSEL E32W board to connect the hardware. For this project, we are using
both the left and right I/O ports, with negative port (-ve) on the outer side, positive port
(+ve) on the middle and signal port (s) on the inner side (as shown below).

Figure 9: Negative, Positive and Signal port on the E32W board

runlinc Project 1 B0: Light Timing Control (E32W Version)

© Copyright 2025 eLabtronics. All Rights Reserved
P A G E | 11

There is one I/O part we are using for this project, a 3-pin LED light, its respective pins
are shown in the figures below. In some kits, due to different manufacturers, the green
pin and the red pin can be inverted. But no worries, we will test it after we build the
circuit.

Figure 10: I/O parts with negative and signal pins indicated

runlinc Project 1 B0: Light Timing Control (E32W Version)

© Copyright 2025 eLabtronics. All Rights Reserved
P A G E | 12

Wiring instructions

a.) Plug in the LED to signal ports io5, io18 and io19 on the E32W board with the “Red” pin
on the light that goes into io5, corresponding to the port D5 we’ve set as Digital_Out and
named as “LED_Light”. We did not configure port D18 on the webpage for this connection
because for this 2-color LED light, the middle pin which is connected to io18 is for lighting up
the green colour, and we don’t need it for this project, so we don’t configure it and thus keep
it off.

Figure 11: Circuit board connection with I/O parts (side view)

runlinc Project 1 B0: Light Timing Control (E32W Version)

© Copyright 2025 eLabtronics. All Rights Reserved
P A G E | 13

Figure 12: Circuit board connection with I/O parts (top view)

runlinc Project 1 B0: Light Timing Control (E32W Version)

© Copyright 2025 eLabtronics. All Rights Reserved
P A G E | 14

turnOn(LED_Light);
await mSec(1000);
turnOff(LED_Light);
await mSec(1000);

Part F: Program the Circuit

Now, we can start programming the functions of the blinking light. To do this, we can simply

change some words in the previous code.

We are turning on the port named “LED_Light”, instead of “Board_LED_Light”. So, we just

change all the “Board_LED_Light” in the code into “LED_Light”.

The final code should look like this:

The final runlinc webpage should look like this:

Figure 13: runlinc webpage screenshot

runlinc Project 1 B0: Light Timing Control (E32W Version)

© Copyright 2025 eLabtronics. All Rights Reserved
P A G E | 15

Part G: The Working Project

If you successfully built the circuit and the program correctly, it should act as what this part

describes:

Run the program by pressing the “Run Code” button on the webpage;

Figure 14: runlinc webpage “Run Code”

you will see the LED light blinking red with a 1-second interval.

Figure 15: Turning on the red LED
Note: If you see a light blinking green, change the name and setting from port D5 to port D18:

Set the port D18 on the control web page as “DIGITAL_OUT”
Copy the name “LED_Light” on port D5
Paste it to port D18
Delete the port name on D5
Set D5 as “DISABLED”

and you will correct it.

Summary

If we want to turn on a device that is connected to the port of the STEMSEL board, we can

do it by connecting it to a port and turn the port to “Digital_Out” and give it a name, then use

the turnOn(port_name) code. The code for turning off the device is similar. We can use

await mSec (time_in_millisecond) to let the program wait for a certain time in milliseconds.

runlinc Project 1 B0: Light Timing Control (E32W Version)

© Copyright 2025 eLabtronics. All Rights Reserved
P A G E | 16

We can let the light have different behaviour by changing these codes, and if we learn more

code, we can use the STEMSEL board to do even more things. Code is what the control

board will follow, what it will do.

Congratulations! Now you have entered the world of runlinc programming. It uses simple

codes and it helps to make your coding way simpler and faster.

